Categories | Inventors
Technology Overview
OHSU # 1791 — Tomographic bright field imaging (TBFI)
Summary
Tomographic bright field image analysis enables the three-dimensional measurement of engineered and biological specimens without the requirement of sample labeling or expensive specialized optical equipment. This novel software offers the unique advantage of true quantitative image analysis of factors like mass and density and could provide a novel way of tracking cellular structure and dynamics over time.
Technology Overview
Current bright field imaging techniques (i.e. dark field, bright field, phase, differential interreference contrast, etc.) remain largely qualitative, preventing detailed analysis of measurements like cellular and subcellular mass without the use of specialized and expensive microscopic equipment. Oregon Health & Science University researcher Owen McCarty and colleagues have developed tomographic bright field imaging (TBFI) to provide a truly quantitative 3-dimensional analysis method that can be utilized with standard laboratory microscopes. Using wave propagation through semi-transparent materials, such as cells and engineered specimens, this software solution uses corresponding values of density within each pixel to determine quantitative measurements within an image. Providing 3-dimensional measurements allows for the quantitation of refractive index, dry mass, volume, and density as demonstrated by validation studies using polystyrene spheres and red blood cells. TBFI can be utilized without stains or immunohistochemical labeling, thereby reducing the preprocessing workload, and is also a standalone computer program. The ability to measure microscopic biomaterial 3-dimensionally using standard microscopes could be utilized for a broad range of research applications and scientific fields and provides a simple way to increase quantitative power for standard microscope users.
Publications
Baker SM et al., “Development of a label-free imaging technique for the quantification of thrombus formation.” Cellular and Molecular Bioengineering 2012 Dec; 5(4):488-492. Link
Phillips et al., “Measurement of single cell refractive index, dry mass, volume and density using a transillumination microscope.” Phys Rev Lett. 109(2012): 118105. Link
Phillips et al. “Quantification of cellular volume and sub-cellular density fluctuations: comparison of normal peripheral blood cells and circulating tumor cells identified in a breast cancer patient.” Frontiers in Oncology 2 (2012). Link
Baker-Groberg SM et al., “Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy.” Journal of Biomedical Optics 2013 Jan; 18(1):16014.
Phillips KG et al., “Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope.” Journal of Visualized Experiments 2014 Apr 7(86). Link
Baker-Groberg SM et al., “Development of a method to quantify platelet adhesion and aggregation under static conditions.” Cellular and Molecular Bioengineering 2014, Jun; 7(2):285-290. Link
Baker-Groberg SM et al., “Critical behavior of subcellular density organization during neutrophil activation and migration.” Cellular and Molecular Bioengineering 2015 Dec; 8(4): 543-552. Link
Baker-Groberg SM et al., "Effect of ionizing radiation on the physical biology of head and neck squamous cell carcinoma cells.” Cellular and Molecular Bioengineering 2015 Sep; 8(3): 517-525. Link
Licensing Opportunity
This technology is available for licensing
Inventors:
Patents
Issued | United States | 9,588,330 |
Categories: