UM-SCC-01 (FANCA^{+/+}) UM-SCC-01ko (FANCA^{-/-}) UM-SCC-01ko+Tg (FANCA+ transgene-complemented from clonally derived FANCA^{-/-} subline)

Description

Organism: Homo sapiens Tissue: Floor of the mouth Disease: Head and neck squamous cell carcinoma Age: 73Y Gender: male HPV status: negative Synonyms: UMSCC-1; UM-SCC1; UMSCC1; SCC-1; SCC1

"UM-SCC-01" is a FANCA+/+ sporadic head and neck squamous cell carcinoma (HNSCC) cell line distributed by Millipore Sigma (SCC070). The cell line was isolated from a surgical resection of a recurrent tumor of the floor of the mouth in a 73-year-old male and established at the University of Michigan (1).

"UM-SCC-01ko" is a clonally derived FANCA-/- cell line generated from UM-SCC-01. The FANCA knockout was generated by dualgRNA cas9-mediated deletion targeting the Nterminus of the FANCA gene resulting in a loss of protein expression and function.

"UM-SCC-01ko+Tg" is a clonally derived, FANCA transgene-containing (Tg+) subline of UM-SCC-01ko in which the FANCA transgene has been inserted into the chromosome 4 'safe harbor site' 231 (SHS231) (2).

Growth and selection media

UM-SCC-01 was grown in Dulbecco's Modified Eagle Medium – High glucose (Sigma D5796), 10% fetal bovine serum (FBS, Hyclone Laboratories SH30071.03), 1% penicillin-streptomycin (Gibco 15140122), and 1% non-essential amino acids (Gibco 11140050).

Antibiotic selection of UM-SCC-01ko+Tg cells after thawing and prior to experiments is

recommended. Selection media: 100 ug/ml hygromycin B in complete media.

Cryopreservation and thaw protocol

Cells were cryopreserved in freezing medium containing 90% complete media and 10% DMSO.

We recommend thawing cells upon arrival to assess viability, and to do test thaws for viability when freezing liquid nitrogen stocks. Thaw the vial in a 37°C bath for 2-3 minutes before gently transferring to a centrifuge tube. Spin at 1000 RPM before resuspending in pre-warmed complete media. Plate the cells in the culture vessel of choice.

Select genomic data

Genomic characterization of the top 12 frequently mutated genes in HNSCC (3).

Gene	TCGA mutfreq (n=276)	Mutation Status
TP53	72%	
FAT1	23%	
CDKN2A	22%	
PIK3CA	21%	
NOTCH1	19%	
KMT2D	18%	
NSD1	10%	
CASP8	9%	Nonsense
AJUBA	6%	
FBXW7	5%	
HRAS	4%	
PTEN	2%	

Additional genomic characterization can be found in the resource manuscript (4) and following publications (5,6).

Quality Control Testing

The terminal expansion samples of the complete trio set were sent to IDEXX BioAnalytics (Columbia, MO, USA) for STR authentication using their Cell Check 9 Plus service. Cells were simultaneously tested for *Mycoplasma* and interspecies contamination from mouse, rat, African green monkey, and Chinese hamster. Distributed cell lines all had unambiguous

STR profile data and were negative for all screened contaminants.

- A Human 9 species-specific STR marker profile was established for the cell line pair. The unique marker results from our recent analysis are listed in STR profiling panels below.
- Test thaws indicate ≥ 50% survival of cells.

STR: ATCC	STR: IDEXX	STR: IDEXX	STR: IDEXX
UM-SCC-01	UM-SCC-01	UM-SCC-01ko	UM-SCC-01ko+Tg
AMEL: X, Y	AMEL: X	AMEL: X	AMEL: X
CSF1PO: 10,12	CSF1PO: 10,12	CSF1PO: 10,12	CSF1PO: 10,12
D13S317: 8,11	D13S317: 8,11	D13S317: 8,11	D13S317: 8,11
D16S539: 12,13	D16S539: 12,13	D16S539: 12,13	D16S539: 12,13
D5S818: 10,13	D5S818: 10,13	D5S818: 10,13	D5S818: 10,13
D7S820: 9,12	D7S820: 9,12	D7S820: 9,12	D7S820: 9,12
TH01: 6	TH01: 6	TH01: 6	TH01: 6
TPOX: 8,11	TPOX: 8,11	TPOX: 8,11	TPOX: 8,11
vWA: 15,18	vWA: 15,18	vWA: 15,18	vWA: 15,18

Note: Previous reports have identified differences in the Amelogenin marker for UM-SCC-01 that are dependent on the passage number (7). The UM-SCC-01 parent cell line included in the FA-CCLR matches the reported STR profile for the long-term passage line. **More extensive STR profiling data can be found the following publications (8,9).**

General workflow

Figure 1: Workflow for generating, characterizing, and complementing *FANCA* isogenic cell line trios starting from sporadic HNSCC cell lines. (A) Generation of *FANCA* clonal knockouts. (B) Complementation of *FANCA* clonal knockouts.

The Fanconi Anemia Cancer Cell Line Resource

Verifying FANCA KO and FANCA complemented clones

The following molecular, biochemical, and phenotypic assays were used to verify the generated *FANCA* knockout and *FANCA* complemented clone. A detailed description of the protocols to generate isogenic pairs and trios and results will be included in the manuscript.

Figure 2: Verification of *FANCA* KO and *FANCA* complemented clones. (A, B) Representative PCR results for detection of (A) wild type FANCA and dual gRNA/cas9 mediated FANCA ko alleles and (B) SH231 site specific insertion of FANCA complementation vector, pSH231-EF1-FANCA-Hygro. (C) Representative immunoblot result for detection of FANCA protein in 30 µg of whole cell lysates. (D) Assessment of cell survival by alamarBlue assay 4 days after continuous exposure to mitomycin C (MMC).

Protocols

1. Molecular detection of FANCA wild type (WT) and knockout (KO) alleles:

Primers used:

- Forward primer sequence: 5' AATTGTTCTCCCGTCTGCTCTC 3'
- Reverse primer sequence: 5' GGGCCGTCTCCGTTAGTTTC 3'

PCR conditions:

- Denaturation: 94°C, 20 seconds
- Annealing: 56°C, 20 seconds
- Extension: 72°C, 2 minutes
- Number of cycles: 35

Results: The two predicted PCR products using these primer sequences include a roughly 545 base pair deletion band (FANCA KO) and 1979 base pair intact band (FANCA WT). Both UM-SCC-01ko and UM-SCC-01ko+Tg cells will show the roughly 545 base pair deletion band, while the UM-SCC-01 cells will show the 1979 base pair wild-type intact band.

2. For detection of FANCA complementation vector in safe harbor site 231 (SH231):

Primers used:

- Forward primer sequence: 5' AGAACATGCAATGGCTAGC 3'
- Reverse primer sequence: 5' GCGGTGGTTGACCAGACAAA 3'

Results: The *FANCA* complemented, UM-SCC-01ko+Tg cells, display the predicted 634 base pair products, which represents of site-specific orientation.

3. Western blot of FANCA protein

Antibody used:

- FANCA primary antibody: Rabbit polyclonal (Bethyl laboratories #A301-980A)
- Secondary antibody: Goat anti-rabbit IgG, HRP conjugated (InVitrogen #G21234)

Results: UM-SCC-01 cells and FANCA complemented UM-SCC-01ko+Tg have a band indicating the presence of full-length wild type FANCA, whereas in UM-SCC-01ko cells have no detection of the full-length wild type FANCA protein due to the deletion in the *FANCA* gene.

4. Phenotypic analysis using a Mitomycin C sensitivity assay

Reagents:

- Mitomycin C (Millipore Sigma Cat. #M4287)
- alamarBlue Cell Viability Reagent (ThermoFischer Scientific DAL1025)

Procedure:

- 1. 2,500 cells are seeded per well in 48-well plates.
- 2. Cells are treated with varying concentrations of MMC ranging from 0nM to 80nM in fresh culture medium.
- 3. Incubate for 4 days.
- 4. Determine relative cell viability using the alamarBlue Cell Viability Reagent.

Results: UM-SCC-01ko demonstrate distinct hypersensitivity to MMC, while UM-SCC-01ko+Tg will show restored resistance comparable to wild type UM-SCC-01 cells.

References

- Krause, C. J., Carey, T. E., Ott, R. W., Hurbis, C., McClatchey, K. D., & Regezi, J. A. (1981). Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines. *Archives* of otolaryngology (Chicago, III. : 1960), 107(11), 703–710. https://doi.org/10.1001/archotol.1981.00790470051012
- Pellenz, S., Phelps, M., Tang, W., Hovde, B. T., Sinit, R. B., Fu, W., Li, H., Chen, E., & Monnat, R. J., Jr (2019). New Human Chromosomal Sites with "Safe Harbor" Potential for Targeted Transgene Insertion. *Human gene therapy*, *30*(7), 814–828. <u>https://doi.org/10.1089/hum.2018.169</u>
- 3. Cancer Genome Atlas Network (2015). Comprehensive genomic characterization of head and neck squamous cell carcinomas. *Nature*, *517*(7536), 576–582. <u>https://doi.org/10.1038/nature14129</u>
- 4. Tang, W. et al. (2022). Fanconi anemia-isogenic head and neck cancer cell lines a resource for basic and translational science (in preparation for submission Q1 2022. Watch BiorXiv for pre-print)
- Cheng, H., Yang, X., Si, H., Saleh, A. D., Xiao, W., Coupar, J., Gollin, S. M., Ferris, R. L., Issaeva, N., Yarbrough, W. G., Prince, M. E., Carey, T. E., Van Waes, C., & Chen, Z. (2018). Genomic and Transcriptomic Characterization Links Cell Lines with Aggressive Head and Neck Cancers. *Cell reports*, 25(5), 1332–1345.e5. https://doi.org/10.1016/j.celrep.2018.10.007
- Kalu, N. N., Mazumdar, T., Peng, S., Shen, L., Sambandam, V., Rao, X., Xi, Y., Li, L., Qi, Y., Gleber-Netto, F. O., Patel, A., Wang, J., Frederick, M. J., Myers, J. N., Pickering, C. R., & Johnson, F. M. (2017). Genomic characterization of human papillomavirus-positive and -negative human squamous cell cancer cell lines. *Oncotarget*, 8(49), 86369–86383. <u>https://doi.org/10.18632/oncotarget.21174</u>
- Brenner, J. C., Graham, M. P., Kumar, B., Saunders, L. M., Kupfer, R., Lyons, R. H., Bradford, C. R., & Carey, T. E. (2010). Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines. *Head & neck*, 32(4), 417–426. https://doi.org/10.1002/hed.21198
- Zhao, M., Sano, D., Pickering, C. R., Jasser, S. A., Henderson, Y. C., Clayman, G. L., Sturgis, E. M., Ow, T. J., Lotan, R., Carey, T. E., Sacks, P. G., Grandis, J. R., Sidransky, D., Heldin, N. E., & Myers, J. N. (2011). Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites. *Clinical cancer research: an official journal of the American Association for Cancer Research*, *17*(23), 7248–7264. <u>https://doi.org/10.1158/1078-0432.CCR-11-0690
 </u>
- Yu, M., Selvaraj, S. K., Liang-Chu, M. M., Aghajani, S., Busse, M., Yuan, J., Lee, G., Peale, F., Klijn, C., Bourgon, R., Kaminker, J. S., & Neve, R. M. (2015). A resource for cell line authentication, annotation and quality control. *Nature*, *520*(7547), 307–311. <u>https://doi.org/10.1038/nature14397</u>

Please direct any questions, errors, or omissions to Dr. Ray Monnat (<u>monnat@uw.edu</u>) or Leslie Wakefield (<u>wakefiel@ohsu.edu</u>).

Datasheet version: 03172025